| Question |  | Answer | Marks | Part Marks and Guidance |
| :--- | :--- | :--- | :---: | :--- | :--- | :--- |
| $\mathbf{1}$ | (a) | $360 \div 5[=72]$ or $72 \times 5=360$ 1 | Or $180-\frac{540}{5}$ oe |  |
| (b) | 540 | 2 | M1 for 108 seen in correct context <br> or other valid method |  |
| (c) | 192 | 3 | M2 for 360 $-(108+60)$ or $120+72$ <br> OR M1 for 120 or 72 or 60 seen in <br> correct context | eg on diagram |

\begin{tabular}{|c|c|c|c|c|c|}
\hline 2 \& (a)

(b) \& | (i) |
| :--- |
| (ii) |
| (iii) 2 | \& 2

1
3

1 \& \begin{tabular}{l}
B1 for $4^{3}$ seen \\
B2 for $(\sqrt[3]{8})^{4} \times \frac{1}{8}$ or $16 \times \frac{1}{8}$ or $2^{4} \times \frac{1}{8}$ \\
Or B1 for $\left(8^{-1}\right)=\frac{1}{8}$ or $8^{\frac{4}{3}}=(\sqrt[3]{8})^{4}$ or $\sqrt[3]{8^{4}}$ or $\left(8^{\frac{4}{3}}\right)=2^{4}$ or 16 \\
Or
$$
\begin{aligned}
8^{8^{\frac{4}{3}}} \times 8^{-1} & =8^{\frac{1}{3}} \text { M1 } \\
\text { cao } & =\sqrt[3]{8} \quad \text { A1 }
\end{aligned}
$$

 \& 

Correct answer, no working scores 3 \\
If decimals used, 0.33, 1.33 or better
\end{tabular} \\

\hline
\end{tabular}




| 4 | (a) | Trapezium | 1 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | (b) | $126$ <br> Alternate angles | $\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$ | Condone 'Z' but not 'alternating' | Not with contradictory comments |
|  | (c) | 144 | 3 | B1 for $g+h=180$ soi M1 for $180 \div 5$ or 36 seen | eg by ADC $=54^{\circ}$ |

$\left.\left.\begin{array}{|l|l|l|l|l|l|l|}\hline \mathbf{5} & & & 100 & 3 & \begin{array}{l}\text { M2 for } 540-(90+70+130+\text { their } 150) \\ \text { or } 180-[360-(30+110+50+90)]\end{array} & \begin{array}{l}\text { Their } 150 \neq 210 \\ \text { If exterior angles used } \\ \text { Could be on diagram }\end{array} \\ \text { If exterior angles used }\end{array}\right] \begin{array}{l}\text { Or M1 for } 360-210 \text { soi by } 150 \\ \text { or }[360-(30+110+50+90)] \\ \text { or (method leading to) } 540\end{array}\right]$

| $\mathbf{6}$ | (a | 54 <br> Opp(osite) angles (in a) cyclic <br> quad(rilateral) add to $180^{\circ}$1 <br> 1 | 'Add to $180^{\circ}$ ' can be implied (eg by correct <br> answer) but not by $126^{\circ}$ | Condone reasonable <br> abbreviations and poor spelling |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | (b) | 81 |  |  |  |


| 7 |  | 20 | 3 | M2 for $360 \div$ their $(180-162)$ <br> Or M1 for $180-162$ seen or 18 seen or <br> $(n-2) \times 180$ <br> $\frac{n}{2}$ | M2 for other complete methods |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

